首页 新闻动态 文章详情

助力科研,乐动平台(中国)生物一步法去除gDNA及第一链cDNA合成试剂、抗His标签和抗GST标签抗体荣登Science

文章信息

文章题目:Targeted MYC2 stabilization confers citrus Huanglongbing resistance

期刊:Science

发表时间:2025年4月11日

主要内容:中国科学院微生物研究所叶健团队在Science期刊上发表了题为“Targeted MYC2 stabilization confers citrus Huanglongbing resistance”的研究论文。该研究成功解析柑橘抗黄龙病核心分子机制,并利用人工智能(AI)技术筛选出可有效防控该病害的小肽。这项研究不仅破解了困扰国际农业界缺乏柑橘黄龙病抗性基因的科学难题,也为全球柑橘产业可持续发展提供了新的解决方案。

原文链接:https://science.org/doi/10.1126/science.adq7203

使用TransGen产品:

TransScript® One-Step gDNA Removal and cDNA Synthesis SuperMix (AT311)

ProteinFind® Anti-His Mouse Monoclonal Antibody (HT501)

ProteinFind® Anti-GST Mouse Monoclonal Antibody (HT601)

Targeted MYC2 stabilization confers citrus Huanglongbing resistance

研究背景

黄龙病是全球柑橘产业面临的毁灭性病害,因其潜伏期长、症状隐匿、传播迅速成为制约我国乃至世界柑橘产业高质量发展的重大问题。长期以来,由于病原菌无法分离培养,且自然抗性种质资源极为稀缺,导致相关研究和防控技术开发进展缓慢。

文章概述

本研究首次明确了E3泛素连接酶PUB21通过降解关键抗病蛋白MYC2,负向调控植物免疫响应的作用路径,发现了一个高度保守且可调控的遗传抗性网络。其中,鉴定的感病基因PUB21为柑橘抗黄龙病育种提供了明确的分子靶标,对柑橘抗性改良具有重要实践意义。基于这一机制发现,研究团队自主开发了靶向PUB21活性的高通量筛选平台,成功筛选出双功能肽APP3-14等具有显著抑制黄龙病菌活性的候选分子,为黄龙病的防控提供了小分子物质。该成果不仅丰富了植物免疫调控理论体系,更为我国柑橘黄龙病的绿色防控提供了理论支撑。

乐动平台(中国)生物产品支撑

优质的试剂是科学研究的利器。乐动平台(中国)生物的一步法去除gDNA及第一链cDNA合成试剂(AT311)、抗His标签鼠单克隆抗体 (HT501) 和抗GST标签鼠单克隆抗体 (HT601) 助力本研究。产品自上市以来,深受客户青睐,多次荣登知名期刊,助力科学研究。

TransScript® One-Step gDNA Removal and cDNA Synthesis SuperMix (AT311)

本产品以RNA为模板,在同一反应体系中,合成第一链cDNA的同时去除RNA模板中残留的基因组DNA。反应结束后,只需在85℃加热5秒钟,即可同时失活TranScript® RT/RI与gDNA Remover。

产品特点

• 在同一反应体系中,同时完成反转录与基因组DNA的去除,操作简便,降低污染机率。

• 产物用于qPCR:反转录15分钟;产物用于PCR:反转录30分钟。

• 反应结束后,同时热失活RT/RI与gDNA Remover。

• 合成片段≤12 kb。

ProteinFind® Anti-His Mouse Monoclonal Antibody (HT501)

抗His标签鼠单克隆抗体为高纯度的小鼠单克隆抗体,属IgG1同型,免疫原为人工合成的6×His标签多肽序列(HHHHHH)。     

产品特点

• 高纯度的抗小鼠单克隆抗体,特异性强。

• 高度特异识别重组蛋白C末端或N末端的6×His标签。

• 适用于定性或定量检测His融合表达蛋白。  

ProteinFind® Anti-GST Mouse Monoclonal Antibody (HT601)

抗GST标签鼠单克隆抗体为高纯度的小鼠单克隆抗体,属IgG2a同型,免疫原为酵母Y258 GST重组表达蛋白。

产品特点

• 高纯度的小鼠单克隆抗体, 特异性强。

• 与GST结构域具有高亲和性,适用于特异性检测GST融合表达蛋白。

乐动平台(中国)生物的产品再度亮相Science期刊,不仅是对乐动平台(中国)生物产品卓越品质与雄厚实力的有力见证,更是生动展现了乐动平台(中国)生物长期秉持的“品质高于一切,精品服务客户”核心理念。一直以来,乐动平台(中国)生物凭借对品质的执着追求和对创新的不懈探索,其产品已成为众多科研工作者信赖的得力助手。展望未来,我们将持续推出更多优质产品,期望携手更多科研领域的杰出人才,共同攀登科学高峰,书写科研创新的辉煌篇章。

使用TransScript® One-Step gDNA Removal and cDNA Synthesis SuperMix (AT311)产品发表的部分文章:

• Zhao P Z, Yang H, Sun J Y, et al. Targeted MYC2 stabilization confers citrus Huanglongbing resistance [J]. Science, 2025.(IF 44.7)

• Wang Y, Wang Y, Zhu Y, et al. Angiomotin cleavage promotes leader formation and collective cell migration[J]. Developmental Cell, 2025.(IF 10.7)

• Zhao K, Zhang J, Fan Y, et al. PSC1, a basic/helix–loop–helix transcription factor controlling the purplish‐red testa trait in peanut[J]. Journal of Integrative Plant Biology, 2025.(IF 9.3)

• Wang S, Du Y, Zhang B, et al. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient[J]. Cell, 2024.(IF 45.5)

• Zhu J, Zhong X, He H, et al. Generation of human expandable limb-bud-like progenitors via chemically induced dedifferentiation[J]. Cell Stem Cell, 2024. (IF 19.8)

• Hong Y, Yu Z, Zhou Q, et al. NAD+ deficiency primes defense metabolism via 1O2-escalated jasmonate biosynthesis in plants[J]. Nature Communications, 2024. (IF 14.7)

• Zhang H, Ma J, Wu Z, et al. BacPE: a versatile prime-editing platform in bacteria by inhibiting DNA exonucleases[J]. Nature Communications, 2024.(IF 14.7)

• Zuo F, Jiang L, Su N, et al. Imaging the dynamics of messenger RNA with a bright and stable green fluorescent RNA[J]. Nature Chemical Biology, 2024.(IF 12.9)

• Gong Q, Wang Y, He L, et al. Molecular basis of methyl-salicylate-mediated plant airborne defence[J]. Nature, 2023.(IF 50.5)

• Fan H, Quan S, Ye Q, et al. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana[J]. Molecular Plant, 2023.(IF 17.1)

• Wang Y, Wang Z, Chen W, et al. A KDPG sensor RccR governs Pseudomonas aeruginosa carbon metabolism and aminoglycoside antibiotic tolerance[J]. Nucleic Acids Research, 2023.(IF 16.6)

• Zhang W, Pan X, Xu Y, et al. Mevalonate improves anti-PD-1/PD-L1 efficacy by stabilizing CD274 mRNA[J]. Acta Pharmaceutica Sinica B, 2023.(IF 14.7)

• Liu W, Yao Q, Su X, et al. Molecular insights into Spindlin1-HBx interplay and its impact on HBV transcription from cccDNA minichromosome[J]. Nature Communications, 2023.(IF 14.7)

• Yan Z W, Chen F Y, Zhang X, et al. Endocytosis-mediated entry of a caterpillar effector into plants is countered by Jasmonate[J]. Nature Communications, 2023.(IF 14.7)

• Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022.(IF 50.5)

• Chen J, Ou Y, Luo R, et al. SAR1B senses leucine levels to regulate mTORC1 signalling[J]. Nature, 2021.(IF 50.5)

使用ProteinFind® Anti-His Mouse Monoclonal Antibody(HT501)产品发表的部分文章:

• Ou X M, Ma C Y, Sun D J, et al. SecY translocon chaperones protein folding during membrane protein insertion [J]. Cell, 2025.(IF 45.5)

• Zhao P Z, Yang H, Sun J Y, et al. Targeted MYC2 stabilization confers citrus Huanglongbing resistance [J]. Science, 2025.(IF 44.7)

• Lu P, Zhang G H, Li J, et al. A wheat tandem kinase and NLR pair confers resistance to multiple fungal pathogens[J]. Science, 2025.(IF 44.7)

• Zhao S, Makarova K S, Zheng W, et al. Widespread photosynthesis reaction centre barrel proteins are necessary for haloarchaeal cell division[J]. Nature Microbiology, 2024.(IF 20.5)

• Chen X, Li W W, Gao J, et al. Arabidopsis PDLP7 modulated plasmodesmata function is related to BG10-dependent glucosidase activity required for callose degradation[J]. Science Bulletin, 2024.(IF 18.8)

• Feng L, Luo X, Huang L, et al. A viral protein activates the MAPK pathway to promote viral infection by downregulating callose deposition in plants[J]. Nature Communications, 2024,(IF 14.7)

• Li J, Liu X, Chang S, et al. The potassium transporter TaNHX2 interacts with TaGAD1 to promote drought tolerance via modulating stomatal aperture in wheat[J]. Science Advances, 2024.(IF 11.7)

• Li Y, Shen H, Zhang R, et al. Immunoglobulin M perception by FcμR[J]. Nature, 2023.(IF 50.5)

• Lan Z, Song Z, Wang Z, et al. Antagonistic RALF peptides control an intergeneric hybridization barrier on Brassicaceae stigmas[J]. Cell, 2023.(IF 45.5)

• Ge L, Cao B, Qiao R, et al. SUMOylation-modified Pelota-Hbs1 RNA surveillance complex restricts the infection of potyvirids in plants[J]. Molecular Plant, 2023.(IF 17.1)

• Zhong S, Li L, Wang Z, et al. RALF peptide signaling controls the polytubey block in Arabidopsis[J]. Science, 2022.(IF 44.7)

使用ProteinFind® Anti-GST Mouse Monoclonal Antibody(HT601)产品发表的部分文章:

• Zhao P Z, Yang H, Sun J Y, et al. Targeted MYC2 stabilization confers citrus Huanglongbing resistance [J]. Science, 2025.(IF 44.7)

• Lu P, Zhang G H, Li J, et al. A wheat tandem kinase and NLR pair confers resistance to multiple fungal pathogens[J]. Science, 2025.(IF 44.7)

• Feng L, Luo X, Huang L, et al. A viral protein activates the MAPK pathway to promote viral infection by downregulating callose deposition in plants[J]. Nature Communications, 2024,.(IF 14.7)

• Li J, Liu X, Chang S, et al. The potassium transporter TaNHX2 interacts with TaGAD1 to promote drought tolerance via modulating stomatal aperture in wheat[J]. Science Advances, 2024.(IF 11.7)

• Fu X, Zhang J, Sun K, et al. Poly (ADP-ribose) polymerase 1 promotes HuR/ELAVL1 cytoplasmic localization and inflammatory gene expression by regulating p38 MAPK activity[J]. Cellular and Molecular Life Sciences, 2024.(IF 6.2)

• Zhou B, Luo Q, Shen Y, et al. Coordinated regulation of vegetative phase change by brassinosteroids and the age pathway in Arabidopsis[J]. Nature Communications, 2023.(IF 14.7)

• Gu P, Tao W, Tao J, et al. The D14‐SDEL1‐SPX4 cascade integrates the strigolactone and phosphate signalling networks in rice[J]. New Phytologist, 2023.(IF 8.3)

• Li N, Duan Y, Ye Q, et al. The Arabidopsis eIF4E1 regulates NRT1. 1‐mediated nitrate signaling at both translational and transcriptional levels[J]. New Phytologist, 2023. (IF 8.3)

• Liu Y, Yu T F, Li Y T, et al. Mitogen‐activated protein kinase TaMPK3 suppresses ABA response by destabilising TaPYL4 receptor in wheat[J]. New Phytologist, 2022.(IF 8.3)

登录

captcha

注册

*收货地址:
captcha

客服

微信